Reactive oxygen species metabolism and plant-fungal interactions.
نویسندگان
چکیده
Fungal interactions with plants can involve specific morphogenetic developments to access host cells, the suppression of plant defenses, and the establishment of a feeding lifestyle that nourishes the colonizer often-but not always-at the expense of the host. Reactive oxygen species (ROS) metabolism is central to the infection process, and the stage-specific production and/or neutralization of ROS is critical to the success of the colonization process. ROS metabolism during infection is dynamic-sometimes seemingly contradictory-and involves endogenous and exogenous sources. Yet, intriguingly, molecular decision-making involved in the spatio-temporal control of ROS metabolism is largely unknown. When also considering that ROS demands are similar between pathogenic and beneficial fungal-plant interactions despite the different outcomes, the intention of our review is to synthesize what is known about ROS metabolism and highlight knowledge gaps that could be hindering the discovery of novel means to mediate beneficial plant-microbe interactions at the expense of harmful plant-microbe interactions.
منابع مشابه
Generation of Ros by Fungi: Phenomenology and Mechanisms
Reactive oxygen species (ROS) are formed by fungi in the course of metabolic activity. ROS production increases in fungi due to various stress agents such as starvation, light, mechanical damage, and interactions with some other living organisms. Regulation of ROS level appears to be very important during development of the fungal organism. ROS sources in fungal cells, their sensors, and ROS si...
متن کاملImpact of Reactive Oxygen Species on Spermatozoa: ABalancing Act between Beneficial and Detrimental Effects
Reactive oxygen species (ROS)plays an important role in sperm motility. The physiological generation at low concentration induces beneficial effects on sperm functions and plays a significant role in sperm metabolism. Meanwhile, the excessive generation of reactive oxygen species can overwhelm protective mechanism and triggers changes in lipid and protein layers of sperm plasma membrane, which ...
متن کاملReactive oxygen species and plant resistance to fungal pathogens.
Reactive oxygen species (ROS) have been studied for their role in plant development as well as in plant immunity. ROS were consistently observed to accumulate in the plant after the perception of pathogens and microbes and over the years, ROS were postulated to be an integral part of the defence response of the plant. In this article we will focus on recent findings about ROS involved in the in...
متن کاملReactive oxygen species during plant-microorganism early interactions.
Reactive Oxygen Species (ROS) are continuously produced as a result of aerobic metabolism or in response to biotic and abiotic stresses. ROS are not only toxic by-products of aerobic metabolism, but are also signalling molecules involved in several developmental processes in all organisms. Previous studies have clearly shown that an oxidative burst often takes place at the site of attempted inv...
متن کاملFusarium oxysporum mediates systems metabolic reprogramming of chickpea roots as revealed by a combination of proteomics and metabolomics
Molecular changes elicited by plants in response to fungal attack and how this affects plant-pathogen interaction, including susceptibility or resistance, remain elusive. We studied the dynamics in root metabolism during compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp. ciceri (Foc), using quantitative label-free proteomics and NMR-based metabolomics. Resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fungal genetics and biology : FG & B
دوره 110 شماره
صفحات -
تاریخ انتشار 2018